Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Plants (Basel) ; 13(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592782

RESUMO

Melon (Cucumis melo L.) is a valuable horticultural crop of the Cucurbitaceae family. Downy mildew (DM), caused by Pseudoperonospora cubensis, is a significant inhibitor of the production and quality of melon. Brassinolide (BR) is a new type of phytohormone widely used in cultivation for its broad spectrum of resistance- and defense-mechanism-improving activity. In this study, we applied various exogenous treatments (0.5, 1.0, and 2.0 mg·L-1) of BR at four distinct time periods (6 h, 12 h, 24 h, and 48 h) and explored the impact of BR on physiological indices and the genetic regulation of melon seedling leaves infected by downy-mildew-induced stress. It was mainly observed that a 2.0 mg·L-1 BR concentration effectively promoted the enhanced photosynthetic activity of seedling leaves, and quantitative real-time polymerase chain reaction (qRT-PCR) analysis similarly exhibited an upregulated expression of the predicted regulatory genes of photosystem II (PSII) CmHCF136 (MELO3C023596.2) and CmPsbY (MELO3C010708.2), thus indicating the stability of the PSII reaction center. Furthermore, 2.0 mg·L-1 BR resulted in more photosynthetic pigments (nearly three times more than the chlorophyll contents (264.52%)) as compared to the control and other treatment groups and similarly upregulated the expression trend of the predicted key enzyme genes CmLHCP (MELO3C004214.2) and CmCHLP (MELO3C017176.2) involved in chlorophyll biosynthesis. Meanwhile, the maximum contents of soluble sugars and starch (186.95% and 164.28%) were also maintained, which were similarly triggered by the upregulated expression of the predicted genes CmGlgC (MELO3C006552.2), CmSPS (MELO3C020357.2), and CmPEPC (MELO3C018724.2), thereby maintaining osmotic adjustment and efficiency in eliminating reactive oxygen species. Overall, the exogenous 2.0 mg·L-1 BR exhibited maintained antioxidant activities, plastid membranal stability, and malondialdehyde (MDA) content. The chlorophyll fluorescence parameter values of F0 (42.23%) and Fv/Fm (36.67%) were also noticed to be higher; however, nearly three times higher levels of NPQ (375.86%) and Y (NPQ) (287.10%) were observed at 48 h of treatment as compared to all other group treatments. Increased Rubisco activity was also observed (62.89%), which suggested a significant role for elevated carbon fixation and assimilation and the upregulated expression of regulatory genes linked with Rubisco activity and the PSII reaction process. In short, we deduced that the 2.0 mg·L-1 BR application has an enhancing effect on the genetic modulation of physiological indices of melon plants against downy mildew disease stress.

2.
AAPS J ; 26(3): 36, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546903

RESUMO

Selective chemical inhibitors are critical for reaction phenotyping to identify drug-metabolizing enzymes that are involved in the elimination of drug candidates. Although relatively selective inhibitors are available for the major cytochrome P450 enzymes (CYP), they are quite limited for the less common CYPs and non-CYPs. To address this gap, we developed a multiplexed high throughput screening (HTS) assay using 20 substrate reactions of multiple enzymes to simultaneously monitor the inhibition of enzymes in a 384-well format. Four 384-well assay plates can be run at the same time to maximize throughput. This is the first multiplexed HTS assay for drug-metabolizing enzymes reported. The HTS assay is technologically enabled with state-of-the-art robotic systems and highly sensitive modern LC-MS/MS instrumentation. Virtual screening is utilized to identify inhibitors for HTS based on known inhibitors and enzyme structures. Screening of ~4600 compounds generated many hits for many drug-metabolizing enzymes including the two time-dependent and selective aldehyde oxidase inhibitors, erlotinib and dibenzothiophene. The hit rate is much higher than that for the traditional HTS for biological targets due to the promiscuous nature of the drug-metabolizing enzymes and the biased compound selection process. Future efforts will focus on using this method to identify selective inhibitors for enzymes that do not currently have quality hits and thoroughly characterizing the newly identified selective inhibitors from our screen. We encourage colleagues from other organizations to explore their proprietary libraries using a similar approach to identify better inhibitors that can be used across the industry.


Assuntos
Ensaios de Triagem em Larga Escala , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida , Sistema Enzimático do Citocromo P-450 , Hepatócitos , Inibidores Enzimáticos/farmacologia
3.
AAPS J ; 26(2): 26, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366061

RESUMO

CYP3A is one of the most important classes of enzymes and is involved in the metabolism of over 70% drugs. While several selective CYP3A4 inhibitors have been identified, the search for a selective CYP3A5 inhibitor has turned out to be rather challenging. Recently, several selective CYP3A5 inhibitors have been identified through high-throughput screening of ~ 11,000 compounds and hit expansion using human recombinant enzymes. We set forth to characterize the three most selective CYP3A5 inhibitors in a more physiologically relevant system of human liver microsomes to understand if these inhibitors can be used for reaction phenotyping studies in drug discovery settings. Gomisin A and T-5 were used as selective substrate reactions for CYP3A4 and CYP3A5 to determine IC50 values of the two enzymes. The results showed that clobetasol propionate and loteprednol etabonate were potent and selective CYP3A5 reversible inhibitors with selectivity of 24-fold against CYP3A4 and 39-fold or more against the other major CYPs. The selectivity of difluprednate in HLM is much weaker than that in the recombinant enzymes due to hydrolysis of the acetate group in HLM. Based on the selectivity data, loteprednol etabonate can be utilized as an orthogonal approach, when experimental fraction metabolized of CYP3A5 is greater than 0.5, to understand CYP3A5 contribution to drug metabolism and its clinical significance. Future endeavors to identify even more selective CYP3A5 inhibitors are warranted to enable accurate determination of CYP3A5 contribution to metabolism versus CYP3A4.


Assuntos
Inibidores do Citocromo P-450 CYP3A , Citocromo P-450 CYP3A , Humanos , Inibidores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/metabolismo , Etabonato de Loteprednol , Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos Hepáticos/metabolismo
4.
Genes (Basel) ; 14(9)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37761868

RESUMO

Melon is an important fruit crop of the Cucurbitaceae family that is being cultivated over a large area in China. Unfortunately, salt stress has crucial effects on crop plants and damages photosynthesis, membranal lipid components, and hormonal metabolism, which leads to metabolic imbalance and retarded growth. Herein, we performed RNA-seq analysis and a physiological parameter evaluation to assess the salt-induced stress impact on photosynthesis and root development activity in melon. The endogenous quantification analysis showed that the significant oxidative damage in the membranal system resulted in an increased ratio of non-bilayer/bilayer lipid (MGDG/DGDG), suggesting severe irregular stability in the photosynthetic membrane. Meanwhile, root development was slowed down by a superoxidized membrane system, and downregulated genes showed significant contributions to cell wall biosynthesis and IAA metabolism. The comparative transcriptomic analysis also exhibited that major DEGs were more common in the intrinsic membrane component, photosynthesis, and metabolism. These are all processes that are usually involved in negative responses. Further, the WGCN analysis revealed the involvement of two main network modules: the thylakoid membrane and proteins related to photosystem II. The qRT-PCR analysis exhibited that two key genes (MELO3C006053.2 and MELO3C023596.2) had significant variations in expression profiling at different time intervals of salt stress treatments (0, 6, 12, 24, and 48 h), which were also consistent with the RNA-seq results, denoting the significant accuracy of molecular dataset analysis. In summary, we performed an extensive molecular and metabolic investigation to check the salt-stress-induced physiological changes in melon and proposed that the PSII reaction centre may likely be the primary stress target.

5.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(8): 1036-1040, 2023 Aug 10.
Artigo em Chinês | MEDLINE | ID: mdl-37532508

RESUMO

OBJECTIVE: To explore the clinical characteristics and molecular genetic mechanism of a fetus with recombinant chromosome 8 (Rec8) syndrome. METHODS: A fetus who was diagnosed with Rec8 syndrome at the Provincial Hospital Affiliated to Shandong First Medical University on July 20, 2021 due to high risk for sex chromosomal aneuploidy indicated by non-invasive prenatal testing (NIPT) (at 21st gestational week) was selected as the study subject. Clinical data of the fetus was collected. G-banded karyotyping and chromosomal microarray analysis (CMA) were carried out on the amniotic fluid sample. Peripheral blood samples of the couple were also subjected to G banded karyotyping analysis. RESULTS: Prenatal ultrasonography at 23rd gestational week revealed hypertelorism, thick lips, renal pelvis separation, intrahepatic echogenic foci, and ventricular septal defect. The karyotype of amniotic fluid was 46,XX,rec(8)(qter→q22.3::p23.1→qter), and CMA was arr[GRCh37]8p23.3p23.1(158049_6793322)×1, 8q22.3q24.3(101712402_146295771)×3. The karyotype of the pregnant woman was 46,XX,inv(8)(p23.1q22.3), whilst that of her husband was normal. CONCLUSION: The Rec8 syndrome in the fetus may be attributed to the pericentric inversion of chromosome 8 in its mother. Molecular testing revealed that the breakpoints of this Rec8 have differed from previously reported ones.


Assuntos
Cromossomos Humanos Par 8 , Feto , Humanos , Feto/anormalidades , Feminino , Gravidez , Cariotipagem
6.
Sci Transl Med ; 15(693): eade6422, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37023209

RESUMO

Respiratory syncytial virus (RSV) is the leading, global cause of serious respiratory disease in infants and is an important cause of respiratory illness in older adults. No RSV vaccine is currently available. The RSV fusion (F) glycoprotein is a key antigen for vaccine development, and its prefusion conformation is the target of the most potent neutralizing antibodies. Here, we describe a computational and experimental strategy for designing immunogens that enhance the conformational stability and immunogenicity of RSV prefusion F. We obtained an optimized vaccine antigen after screening nearly 400 engineered F constructs. Through in vitro and in vivo characterization studies, we identified F constructs that are more stable in the prefusion conformation and elicit ~10-fold higher serum-neutralizing titers in cotton rats than DS-Cav1. The stabilizing mutations of the lead construct (847) were introduced onto F glycoprotein backbones of strains representing the dominant circulating genotypes of the two major RSV subgroups, A and B. Immunization of cotton rats with a bivalent vaccine formulation of these antigens conferred complete protection against RSV challenge, with no evidence of disease enhancement. The resulting bivalent RSV prefusion F investigational vaccine has recently been shown to be efficacious against RSV disease in two pivotal phase 3 efficacy trials, one for passive protection of infants by immunization of pregnant women and the second for active protection of older adults by direct immunization.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Gravidez , Feminino , Humanos , Animais , Anticorpos Antivirais , Anticorpos Neutralizantes , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vírus Sincicial Respiratório Humano/genética , Glicoproteínas , Sigmodontinae , Proteínas Virais de Fusão/genética
7.
J Med Chem ; 65(2): 1525-1535, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34647463

RESUMO

The front pocket (FP) N-terminal cap (Ncap) cysteine is the most popular site of covalent modification in kinases. A long-standing hypothesis associates the Ncap position with cysteine hyper-reactivity; however, traditional computational predictions suggest that the FP Ncap cysteines are predominantly unreactive. Here we applied the state-of-the-art continuous constant pH molecular dynamics (CpHMD) to test the Ncap hypothesis. Simulations found that the Ncap cysteines of BTK/BMX/TEC/ITK/TXK, JAK3, and MKK7 are reactive to varying degrees; however, those of BLK and EGFR/ERBB2/ERBB4 possessing a Ncap+3 aspartate are unreactive. Analysis suggested that hydrogen bonding and electrostatic interactions drive the reactivity, and their absence renders the Ncap cysteine unreactive. To further test the Ncap hypothesis, we examined the FP Ncap+2 cysteines in JNK1/JNK2/JNK3 and CASK. Our work offers a systematic understanding of the cysteine structure-reactivity relationship and illustrates the use of CpHMD to differentiate cysteines toward the design of targeted covalent inhibitors with reduced chemical reactivities.


Assuntos
Simulação por Computador , Cisteína/química , Guanilato Quinases/química , MAP Quinase Quinase 4/química , Simulação de Dinâmica Molecular , Cisteína/metabolismo , Guanilato Quinases/metabolismo , Humanos , Concentração de Íons de Hidrogênio , MAP Quinase Quinase 4/metabolismo , Modelos Moleculares , Conformação Proteica
8.
Angew Chem Int Ed Engl ; 60(50): 26314-26319, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34609778

RESUMO

Determination of the solution conformation of both small organic molecules and peptides in water remains a substantial hurdle in using NMR solution conformations to guide drug design due to the lack of easy to use alignment media. Herein we report the design of a flexible compressible chemically cross-linked poly-4-acrylomorpholine gel that can be used for the alignment of both small molecules and cyclic peptides in water. To test the new gel, residual dipolar couplings (RDCs) and J-coupling constants were used in the configurational analysis of strychnine hydrochloride, a molecule that has been studied extensively in organic solvents as well as a small cyclic peptide that is known to form an α-helix in water. The conformational ensembles for each molecule with the best fit to the data are reported. Identification of minor conformers in water that cannot easily be determined by conventional NOE measurements will facilitate the use of RDC experiments in structure-based drug design.


Assuntos
Reagentes de Ligações Cruzadas/química , Morfolinas/química , Peptídeos/análise , Polímeros/química , Estricnina/análise , Água/química , Géis/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular
9.
Sci Adv ; 7(10)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33674318

RESUMO

Human cytomegalovirus (HCMV) causes congenital disease with long-term morbidity. HCMV glycoprotein B (gB) transitions irreversibly from a metastable prefusion to a stable postfusion conformation to fuse the viral envelope with a host cell membrane during entry. We stabilized prefusion gB on the virion with a fusion inhibitor and a chemical cross-linker, extracted and purified it, and then determined its structure to 3.6-Å resolution by electron cryomicroscopy. Our results revealed the structural rearrangements that mediate membrane fusion and details of the interactions among the fusion loops, the membrane-proximal region, transmembrane domain, and bound fusion inhibitor that stabilized gB in the prefusion state. The structure rationalizes known gB antigenic sites. By analogy to successful vaccine antigen engineering approaches for other viral pathogens, the high-resolution prefusion gB structure provides a basis to develop stabilized prefusion gB HCMV vaccine antigens.

10.
Nature ; 592(7853): 283-289, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33524990

RESUMO

A safe and effective vaccine against COVID-19 is urgently needed in quantities that are sufficient to immunize large populations. Here we report the preclinical development of two vaccine candidates (BNT162b1 and BNT162b2) that contain nucleoside-modified messenger RNA that encodes immunogens derived from the spike glycoprotein (S) of SARS-CoV-2, formulated in lipid nanoparticles. BNT162b1 encodes a soluble, secreted trimerized receptor-binding domain (known as the RBD-foldon). BNT162b2 encodes the full-length transmembrane S glycoprotein, locked in its prefusion conformation by the substitution of two residues with proline (S(K986P/V987P); hereafter, S(P2) (also known as P2 S)). The flexibly tethered RBDs of the RBD-foldon bind to human ACE2 with high avidity. Approximately 20% of the S(P2) trimers are in the two-RBD 'down', one-RBD 'up' state. In mice, one intramuscular dose of either candidate vaccine elicits a dose-dependent antibody response with high virus-entry inhibition titres and strong T-helper-1 CD4+ and IFNγ+CD8+ T cell responses. Prime-boost vaccination of rhesus macaques (Macaca mulatta) with the BNT162b candidates elicits SARS-CoV-2-neutralizing geometric mean titres that are 8.2-18.2× that of a panel of SARS-CoV-2-convalescent human sera. The vaccine candidates protect macaques against challenge with SARS-CoV-2; in particular, BNT162b2 protects the lower respiratory tract against the presence of viral RNA and shows no evidence of disease enhancement. Both candidates are being evaluated in phase I trials in Germany and the USA1-3, and BNT162b2 is being evaluated in an ongoing global phase II/III trial (NCT04380701 and NCT04368728).


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Modelos Animais de Doenças , SARS-CoV-2/imunologia , Envelhecimento/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/química , Antígenos Virais/genética , Antígenos Virais/imunologia , Vacina BNT162 , COVID-19/sangue , COVID-19/terapia , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/química , Vacinas contra COVID-19/genética , Linhagem Celular , Ensaios Clínicos como Assunto , Feminino , Humanos , Imunização Passiva , Internacionalidade , Macaca mulatta/imunologia , Macaca mulatta/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Multimerização Proteica , RNA Viral/análise , Sistema Respiratório/imunologia , Sistema Respiratório/virologia , SARS-CoV-2/química , SARS-CoV-2/genética , Solubilidade , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T/imunologia , Vacinação , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/química , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Soroterapia para COVID-19 , Vacinas de mRNA
11.
Nat Chem Biol ; 17(2): 152-160, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33199914

RESUMO

Heterobifunctional chimeric degraders are a class of ligands that recruit target proteins to E3 ubiquitin ligases to drive compound-dependent protein degradation. Advancing from initial chemical tools, protein degraders represent a mechanism of growing interest in drug discovery. Critical to the mechanism of action is the formation of a ternary complex between the target, degrader and E3 ligase to promote ubiquitination and subsequent degradation. However, limited insights into ternary complex structures exist, including a near absence of studies on one of the most widely co-opted E3s, cellular inhibitor of apoptosis 1 (cIAP1). In this work, we use a combination of biochemical, biophysical and structural studies to characterize degrader-mediated ternary complexes of Bruton's tyrosine kinase and cIAP1. Our results reveal new insights from unique ternary complex structures and show that increased ternary complex stability or rigidity need not always correlate with increased degradation efficiency.


Assuntos
Tirosina Quinase da Agamaglobulinemia/genética , Proteínas Inibidoras de Apoptose/genética , Cromatografia em Gel , Reagentes de Ligações Cruzadas , Humanos , Cinética , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteólise , Espectrometria de Massas por Ionização por Electrospray , Ubiquitina-Proteína Ligases , Ubiquitinação , Difração de Raios X
12.
Front Oncol ; 10: 553536, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224872

RESUMO

AIM: The role of spindle and kinetochore-associated (SKA) genes in tumorigenesis and cancer progression has been widely studied. However, so far, the oncogenic involvement of SKA family genes in pancreatic cancer and their prognostic potential remain unknown. METHODS: Here, we carried out a meta-analysis of the differential expression of SKA genes in normal and tumor tissue. Univariate and multivariate survival analyses were done to evaluate the correlation between SKA family gene expression and pancreas ductal adenocarcinoma (PDAC) prognosis. Joint-effect and stratified survival analysis as well as nomogram analysis were used to estimate the prognostic value of genes. The underlying regulatory and biological mechanisms were identified by Gene set enrichment analysis. Interaction between SKA prognosis-related genes and immune cell infiltration was assessed using the Tumor Immune Estimation Resource tool. RESULTS: We find that SKA1-3 are highly expressed in PDAC tissues relative to non-cancer tissues. Survival analysis revealed that high expression of SKA1 and SKA3 independently indicate poor prognosis but they are not associated with relapse-free survival. The prognostic value of SKA1 and SKA3 was further confirmed by the nomogram, joint-effect, and stratified survival analysis. Analysis of underlying mechanisms reveals that these genes influence cancer-related signaling pathways, kinases, miRNA, and E2F family genes. Notably, prognosis-related genes are inversely correlated with several immune cells infiltrating levels. CONCLUSION: We find that SKA1 and SKA3 expression correlates with prognosis and immune cell infiltration in PDAC, highlighting their potential as pancreatic cancer prognostic biomarkers.

13.
Nat Commun ; 11(1): 3031, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32541785

RESUMO

Chemokines are important protein-signaling molecules that regulate various immune responses by activating chemokine receptors which belong to the G protein-coupled receptor (GPCR) superfamily. Despite the substantial progression of our structural understanding of GPCR activation by small molecule and peptide agonists, the molecular mechanism of GPCR activation by protein agonists remains unclear. Here, we present a 3.3-Å cryo-electron microscopy structure of the human chemokine receptor CCR6 bound to its endogenous ligand CCL20 and an engineered Go. CCL20 binds in a shallow extracellular pocket, making limited contact with the core 7-transmembrane (TM) bundle. The structure suggests that this mode of binding induces allosterically a rearrangement of a noncanonical toggle switch and the opening of the intracellular crevice for G protein coupling. Our results demonstrate that GPCR activation by a protein agonist does not always require substantial interactions between ligand and the 7TM core region.


Assuntos
Quimiocina CCL20/metabolismo , Receptores CCR6/química , Receptores CCR6/metabolismo , Quimiocina CCL20/química , Quimiocina CCL20/genética , Microscopia Crioeletrônica , Humanos , Ligantes , Ligação Proteica , Receptores CCR6/genética , Receptores Acoplados a Proteínas G , Transdução de Sinais
14.
Biophys J ; 117(11): 2228-2239, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31703801

RESUMO

Although the three-dimensional structures of G-protein coupled receptors (GPCRs), the largest superfamily of drug targets, have enabled structure-based drug design, there are no structures available for 87% of GPCRs. This is due to the stiff challenge in purifying the inherently flexible GPCRs. Identifying thermostabilized mutant GPCRs via systematic alanine scanning mutations has been a successful strategy in stabilizing GPCRs, but it remains a daunting task for each GPCR. We developed a computational method that combines sequence-, structure-, and dynamics-based molecular properties of GPCRs that recapitulate GPCR stability, with four different machine learning methods to predict thermostable mutations ahead of experiments. This method has been trained on thermostability data for 1231 mutants, the largest publicly available data set. A blind prediction for thermostable mutations of the complement factor C5a receptor 1 retrieved 36% of the thermostable mutants in the top 50 prioritized mutants compared to 3% in the first 50 attempts using systematic alanine scanning.


Assuntos
Simulação de Dinâmica Molecular , Mutação , Receptor da Anafilatoxina C5a/química , Análise de Sequência/métodos , Alanina/química , Alanina/genética , Substituição de Aminoácidos , Células HEK293 , Humanos , Aprendizado de Máquina , Domínios Proteicos , Estabilidade Proteica , Receptor da Anafilatoxina C5a/genética
15.
Elife ; 82019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31580259

RESUMO

Alanine-serine-cysteine transporter 2 (ASCT2, SLC1A5) is the primary transporter of glutamine in cancer cells and regulates the mTORC1 signaling pathway. The SLC1A5 function involves finely tuned orchestration of two domain movements that include the substrate-binding transport domain and the scaffold domain. Here, we present cryo-EM structures of human SLC1A5 and its complex with the substrate, L-glutamine in an outward-facing conformation. These structures reveal insights into the conformation of the critical ECL2a loop which connects the two domains, thus allowing rigid body movement of the transport domain throughout the transport cycle. Furthermore, the structures provide new insights into substrate recognition, which involves conformational changes in the HP2 loop. A putative cholesterol binding site was observed near the domain interface in the outward-facing state. Comparison with the previously determined inward-facing structure of SCL1A5 provides a basis for a more integrated understanding of substrate recognition and transport mechanism in the SLC1 family.


Assuntos
Sistema ASC de Transporte de Aminoácidos/química , Sistema ASC de Transporte de Aminoácidos/metabolismo , Glutamina/química , Glutamina/metabolismo , Antígenos de Histocompatibilidade Menor/química , Antígenos de Histocompatibilidade Menor/metabolismo , Microscopia Crioeletrônica , Humanos , Ligação Proteica , Conformação Proteica
16.
Methods Mol Biol ; 2001: 97-106, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134569

RESUMO

Protein-protein interactions are ubiquitous, essential to almost all known biological processes, and offer attractive opportunities for therapeutic intervention. Linear peptide drugs, however, can be applied therapeutically as protein recognition motifs only to a limited extent because of their poor permeability, decreased receptor selectivity, and proteolytic stability. A major strategy in peptide chemistry is directed toward chemical modification and macrocyclization in order to limit a peptide's conformational possibilities, to increase its chemical and enzymatic stability, to prolong the time of action, and to increase activity and selectivity toward the receptor.


Assuntos
Peptídeos Cíclicos/química , Motivos de Aminoácidos , Biomimética , Ciclização , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Proteólise
17.
J Org Chem ; 84(8): 4803-4813, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30605335

RESUMO

Cyclic peptides have long tantalized drug designers with their potential ability to combine the best attributes of antibodies and small molecules. An ideal cyclic peptide drug candidate would be able to recognize a protein surface like an antibody while achieving the oral bioavailability of a small molecule. It has been hypothesized that such cyclic peptides balance permeability and solubility using their solvent-dependent conformational flexibility. Herein we report a conformational deconvolution NMR methodology that combines residual dipolar couplings, J-couplings, and intramolecular hydrogen bond analysis along with conformational analysis using molecular dynamics simulations and density functional theory calculations for studying cyclic peptide conformations in both low-dielectric solvent (chloroform) and high-dielectric solvent (DMSO) to experimentally study the solvent-dependent conformational change hypothesis. Taken together, the combined experimental and computational approaches can illuminate conformational ensembles of cyclic peptides in solution and help identify design opportunities for better permeability.


Assuntos
Teoria da Densidade Funcional , Simulação de Dinâmica Molecular , Peptídeos Cíclicos/síntese química , Ligação de Hidrogênio , Peptídeos Cíclicos/química , Conformação Proteica
18.
Bioorg Med Chem Lett ; 28(15): 2585-2592, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29980357

RESUMO

The drugable proteome is limited by the number of functional binding sites that can bind small molecules and respond with a therapeutic effect. Orthosteric and allosteric modulators of enzyme function or receptor signaling are well-established mechanisms of drug action. Drugs that perturb protein-protein interactions have only recently been launched. This approach is more difficult due to the extensive contact surfaces that must be perturbed antagonistically. Compounds that promote novel protein-protein interactions promise to dramatically expand opportunities for therapeutic intervention. This approach is precedented with natural products (rapamycin, FK506, sanglifehrin A), synthetic small molecules (thalidomide and IMiD derivatives) and indisulam analogues.


Assuntos
Adesivos/farmacologia , Produtos Biológicos/farmacologia , Regulação Alostérica/efeitos dos fármacos , Descoberta de Drogas , Humanos , Ligantes , Ligação Proteica , Proteólise , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/metabolismo
19.
Behav Processes ; 145: 81-85, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29080805

RESUMO

Sequential randomness is one of the three important assumptions for Pulliam's vigilance model (1973). Here we tested the sequential randomness in Black-necked cranes Grus nigricollis, to see if the vigilance sequence can be predicted. Not similar to other recent studies, we found that most vigilance sequences (44/46) passed runs randomness test, and the length of an inter-scan interval was usually unrelated to its previous scan duration. Our findings suggest high predation risk might favor a random pattern of vigilance.


Assuntos
Nível de Alerta , Atenção , Aves , Comportamento Predatório , Processamento Espacial , Vigília , Animais , Feminino , Masculino , Memória de Curto Prazo
20.
J Med Chem ; 60(5): 1971-1993, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28139931

RESUMO

Significant work has been dedicated to the discovery of JAK kinase inhibitors resulting in several compounds entering clinical development and two FDA approved NMEs. However, despite significant effort during the past 2 decades, identification of highly selective JAK3 inhibitors has eluded the scientific community. A significant effort within our research organization has resulted in the identification of the first orally active JAK3 specific inhibitor, which achieves JAK isoform specificity through covalent interaction with a unique JAK3 residue Cys-909. The relatively rapid resynthesis rate of the JAK3 enzyme presented a unique challenge in the design of covalent inhibitors with appropriate pharmacodynamics properties coupled with limited unwanted off-target reactivity. This effort resulted in the identification of 11 (PF-06651600), a potent and low clearance compound with demonstrated in vivo efficacy. The favorable efficacy and safety profile of this JAK3-specific inhibitor 11 led to its evaluation in several human clinical studies.


Assuntos
Janus Quinase 3/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Pirimidinas/química , Pirróis/química , Transdução de Sinais/efeitos dos fármacos , Administração Oral , Desenho de Fármacos , Humanos , Janus Quinase 3/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Pirróis/administração & dosagem , Pirróis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...